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The asymptotic behavior of #n (d;) #n (d:)&1 and Pn (x, d;) P&1
n (x, d:) is studied.

Here (#n (.))n are the leading coefficients of the orthonormal matrix polynomials
Pn (x, .) with respect to the matrix measures d; and d: which are related by d;(u)=
d:(u)+�N

k=1 Mk$(u&ck), where Mk are positive definite matrices, $ is the Dirac
measure and ck lies outside the support of d: for k=1, ..., N. Finally, we deduce the
asymptotic behavior of Pn (c, d;) MPn*(c, d:) when d;(u)=d:(u)+M$(u&c), with
M a positive definite matrix and c outside the support of d:. � 2001 Academic Press
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1. INTRODUCTION

Let B be a _-algebra of subsets of the space 0, and let \=[\i, j] be a
N_N non-negative matrix valued function on B which is countably
additive, i.e., each entry function \i, j is countably additive on B. We shall
refer to \ as a non-negative valued measure on (0, B).

Let 8 be a matrix-valued function on 0 and & be a non-negative real
valued measure on B. If 8 is B-measurable, i.e., if each of its entries .i, j
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is B-measurable, then we say that 8 is integrable and we define �0 8 d&=
[�0 .i, j d&].

From the fact that \ is a non-negative valued matrix, whose entries are
non-negative real valued measures, we have 0�\�{\ I (A�B means that
A&B is a positive semi-definite matrix, and {\ is the trace measure of \).
It follows that each \i, j is absolutely continuous with respect to the
measure {\, and the trace derivative \${=[d\i, j�d{\]1�i, j�N is B-measurable,
satisfying 0�\${�I {\-almost everywhere. Consequently from the Radon-
Nikodym theorem we have \(A)=�A \${ (w) d{\, for each A # B. Let 8 and
9 be two N_N real matrix-valued functions on 0. We say that (8, 9 ) is
integrable with respect to the non-negative valued measure \ if 8\${9* is
integrable with respect to the real measure {\ and we define �| 8 d\9*=
�| 8\${9* d{\.

We shall consider in the linear space of the polynomials CN_N[t] in the
variable t with matrix coefficients in CN_N, an inner product defined in the
following way

(P, Q) d: =
def |

0
P(t) d:(t) Q*(t), (1)

with 0=R, and : a positive definite valued matrix measure whose entries
are Borel real measures (see [15]).

A generalization of the Gram-Schmidt orthonormalization procedure for
the set [I, xI, x2I, ...] with respect to (1) will give a set of orthonormal
matrix polynomials (Pn ( . , d:))n which satisfies

(Pn (., d:), Pm (., d:)) d:=|
R

Pn (x, d:) :$(x) Pm*(x, d:) d{:=$n, mI.

Notice that the set (UnPn (., d:))n is also a set of orthonormal matrix poly-
nomials for every sequence of unitary matrices (Un)n .

Orthogonal matrix polynomials have been studied in the second half of
this century. Krein obtained some results about matrix moment problems
from the point of view of operator theory [11]. Recently, during the 80's
they have been connected to scattering theory by Geronimo [7], and an
analog of Favard's theorem has been established for three-term recurrence
matrix relation by A. I. Aptekarev and E. M. Nikishin [1]. Some algebraic
results and results concerning the zeros were found by D. Zhani [19].
More recently some results concerning zeros and quadrature formulae have
been studied by A. Sinap and W. Van Assche [17] and finally some results
concerning zeros, quadrature formulae, asymptotic behavior of orthogonal
polynomials have been obtained by A. Dura� n and coworkers [3, 5, 6].
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Matrix orthogonal polynomials appear in a natural way when we con-
sider different kinds of non-standard inner products.

In [12] it is shown that a family of such orthogonal polynomials for
matrix measures supported on the real line can be obtained from a
sequence of polynomials orthogonal with respect to a scalar measure sup-
ported on an harmonic algebraic curve.

In [13] the same problem is studied when we consider polynomials
orthogonal with respect to a scalar measure supported on a lemniscate.
There, a class of a matrix orthogonal polynomials on the unit circle is
obtained.

In [4], Sobolev-type polynomials are analyzed from the perspective of a
decomposition of them. In such a way one can associate to them a matrix
measure plus some matrix mass points. Again, matrix orthogonal polyno-
mials on the real line appear. Thus, the knowledge of properties of matrix
orthogonal polynomials, both analytic and algebraic, is a basic tool in
order to obtain results for the non-standard scalar cases pointed out above.

In [9] Gonchar studies Pade� approximation to Markov functions to
which a rational function is added, which is the same as adding mass
points to a given measure.

The aim of our work is to extend to the matrix case some asymptotic
results obtained by P. Nevai [14, Lemma 16, p. 132] when some mass
points are added to a measure such that the corresponding Jacobi matrix
is a compact perturbation of the infinite tridiagonal matrix

\
b
a

a
b
a

a
b

. . .
a

. . .
. . .
+ .

This kind of asymptotic results has been obtained, separately, in [9] in the
framework of rational approximation. In fact, the approximation to some
classes of meromorphic functions (``Markov functions'' with a perturbation
by a rational function with prescribed poles) is considered, and the relative
asymptotics for the denominators of the corresponding Pade� approximants
is obtained (see [9]).

In this paper we shall consider two matrix measures d: and d; such that
d;(u)=d:(u)+�N

k=1 Mk$(u&ck), where Mk is a positive definite matrix,
$ is the Dirac matrix measure and ck lies outside the support of d: for
k=1, ..., N.

Let (Pn (x, .)=#n (.) xn+bn (.) xn&1+lower degree terms)n be a sequence
of orthonormal matrix polynomials with respect to the matrix measure d:
and d;, respectively.
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In Section 2 we will introduce orthogonal matrix polynomials on the real
line and discuss some properties which we will need in the next sections. In
Section 3 we deduce the behavior of #n (d;) #n (d:)&1. In Section 4 we give
the relative asymptotics for some nth orthonormal matrix polynomials with
respect to the matrix measure d; and the nth orthonormal matrix polyno-
mials with respect to the matrix measure d:.

2. ORTHOGONAL MATRIX POLYNOMIALS ON THE REAL LINE

For each real matrix measure d:, we introduce

(P, Q) d: =
def |

R

P(x) d:Q*(x). (2)

This bilinear form satisfies

1. (P, Q) d:=(Q, P)*d: .

2. (xP, Q)d:=(P, xQ) d: .

3. (P, P) d: is a non-negative definite matrix. If det P{0, it is a
positive definite matrix.

In the following, we consider a real matrix measure d: for which
(P, P) d: {0 for every matrix polynomial P with non-singular leading
coefficient.

As in the scalar case, the orthonormal matrix polynomials (Pn (x, d:))n

with respect to the matrix measure d: are orthogonal to every matrix poly-
nomial of degree less than n and they satisfy a three-term recurrence
relation

xPn (x, d:)=Dn+1 (d:) Pn+1 (x, d:)

+En (d:) Pn (x, d:)+Dn*(d:) Pn&1 (x, d:), (3)

where P&1 = 0, P0 = � d: = I, Dn (d:) = #n&1 (d:) #&1
n (d:) is a positive

definite matrix (#n (d:) is the leading coefficient of Pn (x, d:)) and En (d:) is
an hermitian matrix. The corresponding matrix polynomials of the second
kind are defined by

Qn (x, d:) =
def |

Pn (x, d:)&Pn (t, d:)
x&t

d:(t). (4)

These matrix polynomials satisfy the following Liouville�Ostrogradski
formula

Qn (x, d:) P*n&1 (x, d:)&Pn (x, d:) Q*n&1 (x, d:)=D&1
n (d:). (5)
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Furthermore, defining

Kn+1 (x, y, d:) =
def

:
n

j=0

Pj*( y, d:) Pj (x, d:),

we get the Christoffel-Darboux formula

(x& y) Kn+1 (x, y, d:)=Pn*( y, d:) Dn+1 (d:) Pn+1 (x, d:)

&P*n+1 ( y, d:) D*n+1 (d:) Pn (x, d:). (6)

By means of a straightforward computation we get the following equation

Kn+1 (x, x, d:)=P*n+1 (x, d:)$ D*n+1 (d:) Pn (x, d:)

&Pn*(x, d:)$ Dn+1 (d:) Pn+1 (x, d:). (7)

The matrix Kn (x, y, d:) is called the nth reproducing kernel because of the
following property. For every matrix polynomial 6m (x) of degree
m�n&1, we have

(6m , Kn ( } , y, d:)) d:=|
R

6m (x) d:K n*(x, y, d:)=6m ( y). (8)

In the next section, we will use the following results (see [6]) concerning
ratio asymptotic properties for orthogonal matrix polynomials.

First we start with some definitions. Let 2n be the set of zeros of the
matrix polynomial Pn , i.e.,

2n (d:) =
def [xn, k ; k=1, ..., N: det Pn (xn, k , d:)=0],

and setting

1= ,
N>0

MN where MN= .
n�N

2n (d:),

we have supp(d:)/1. Here we define the support of d: as supp(d:)=
supp({d:)=supp(d:1, 1+d:2, 2+ } } } +d:N, N).

We recall that if H is a positive definite (resp. positive semidefinite)
matrix then there is a unique square root H0=H 1�2 of H defined as follows.
Writing H=UDU*, where D=diag(*1 , *2 , ..., *n) and (* i) i=1, n are the
positive eigenvalues of H then H0=UD0U*, where D0=diag(+- *1 ,
+- *2 , ..., +- *n ).

Proposition 2.1 [6]. Let (Pn (x, d:))n be a sequence of orthonormal
matrix polynomials satisfying the three-term recurrence relation (3). Assume
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that limn � � Dn (d:)=D and limn � � En (d:)=E, with D a non-singular
matrix then

lim
n � �

Pn&1 (z, d:) P&1
n (z, d:) D&1

n (d:)=|
dWD, E (t)

z&t
; z # C"1, (9)

where WD, E (t) is the matrix weight for the Chebyshev matrix polynomials of
the second kind. Moreover the convergence is uniform on compact subsets of
C"1.

The analytic function on the right-hand side of (9) has the following
explicit form

v If D is an hermitian positive definite matrix, then

|
dWD, E (t)

x&t
=

1
2

D&1 (xI&E ) D&1

&
1
2

D&1�2[- D&1�2 (E&xI ) D&1 (E&xI ) D&1�2&4I] D&1�2,

(10)

where x � supp(dWD, E).
Here, supp(dWD, E)=[x # R; D&1�2 (E&xI ) D&1�2 has at least one eigen-

value in [&2, 2]].

v If D is an hermitian matrix, then

|
dWD, E (t)

x&t
=

1
2

D&1 (xI&E ) D&1&
1
2

D&1 (E&xI )1�2

_[- I&4(E&xI )&1�2 D(E&xI )&1 D(E&xI )&1�2]

_(E&xI )1�2 D&1, (11)

where x � supp(dWD, E).
Here, supp(dWD, E)=[x # R"[b1 , bN]; (E&xI )1�2 D&1 (E&xI )1�2 has at

least one eigenvalue in [&2, 2]], and b1�b2�...�bN are the eigenvalues
of E.

Lemma 2.1. Let (Pn (x, d:))n be a sequence of orthonormal matrix poly-
nomials with convergent recurrence coefficients which appear in (3). There
exists a positive constant a>0 such that if xn, k is a zero of Pn then
|xn, k |�a, and supp(d:) is contained in [&a, a].
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Proof. Let

J =
def \

E0

D1*
0
b

D1

E1

D2*. . .

0
D1

E2. . .

} } }
0

D3. . .

} } }
} } }
. . .
. . .
+

be the Jacobi matrix with convergent matrix parameters [Ei , Di+1]�
i=0 .

It is known that the zeros (xn, k)nN
k=1 of Pn are eigenvalues of JnN (JnN is

the truncated Jacobi matrix of dimension nN ) (see [5, 17]). Using the
Gershgorin disks for the location of eigenvalues, there is a positive number
a such that |xn, k |�a, and therefore supp(d:)/1/[&a, a]. K

In the following, we denote by 1� the smallest closed interval which
contains the support of d:.

Proposition 2.2. The Markov matrix function � (dWD, E (t))�(z&t) is
positive or negative definite for each z # R"1� . It is differentiable and its
derivative &� (dWD, E (t))�((z&t)2) is negative definite when z is outside
supp(dWD, E).

Proof. We consider

A=[x # R : x>c; \c # 1� ]

and

B=[x # R : x<c; \c # 1� ].

The function 1
z&t is positive (resp. negative) when z # A (resp. z # B) and

t # supp(dWD, E)=supp(d:)/1� . Since dWD, E is a positive definite matrix
measure, the trace derivative W$D, E (t) = [dWD, E �d{WD, E ] is positive
definite (d{WD, E is the positive real trace measure of WD, E ), and for any
real vector u # CN, we have

u \| dWD, E (t)
z&t + u*=u \| W$D, E (t)

z&t
d{WD, E+ u*

=|
(uW$D, E (t) u*)

z&t
d{WD, E .

Consequently the Markov matrix function is positive (resp. negative)
definite in z # A (resp. z # B).
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In a similar way, we can show that the derivative of the Markov matrix
function d

dz � (dWD, E (t))�(z & t) =&� (dWD, E (t))�((z&t)2) is negative
definite when z � supp(dWD, E). K

In the next sections, we will need the asymptotics of the derivative of
(Pn&1 (z, d:) P&1

n (z, d:))n where z belongs to a compact subset of C"1. To
do that we use the well known theorem of Weierstrass concerning the dif-
ferentiation of a sequence of holomorphic functions. We recall that [Wn]n

is locally uniformly convergent in the open set G to a function W
(Wn (z) 8 W(z)) if Wn (z) is uniformly convergent to W(z) in every closed
set contained in G.

Theorem 2.1. If a sequence [Wn]n of functions holomorphic in an open
set G is locally uniformly convergent in G to a function W, then the function
W is also holomorphic in G, and if � � G, then

W (k)
n (z) 8 W (k) (z)

in the set G for k=1, 2, ... .

Proof. See [16]. K

Corollary 2.1. Under the hypothesis of Proposition 2.1 we have

(Pn&1 (z, d:) P&1
n (z, d:)) (k)D&1

n 8 \| dWD, E (t)
z&t +

(k)

(12)

on compact subsets of C"1, for k=1, 2, ... .

The local uniform convergence in (12) means that every entry of the left
hand-side of (12) is locally uniformly convergent to its corresponding entry
in the right hand-side of (12).

Proof. Since (Pn&1 (z, d:) P&1
n (z, d:)) is an holomorphic matrix func-

tion in C"1, each one of its entries is an holomorphic function in C"1, and
from the hypothesis we have that (Pn&1 (z, d:) P&1

n (z, d:) Dn)n converges
uniformly on compact subsets of C"1, hence for each one of its entries.
Therefore (Pn&1 (z, d:) P&1

n (z, d:))n is locally uniformly convergent in
compact subsets of C"1 since each closed subset of a compact set is
compact.

Applying Theorem 2.1 we get

(Pn&1 (z, d:) P&1
n (z, d:)) (k)D&1

n 8 \| dWD, E (t)
z&t +

(k)

. K
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3. THE RATIO ASYMPTOTICS FOR LEADING COEFFICIENTS

Let d: and d; be two matrices of measures, such that d;(u)=d:(u)+
M$(u&c), c # R"1� , where M is a positive definite matrix. Let (Pn (x, .)=
#n ( . ) xn+bn (.) xn&1+lower degree terms)n , be a sequence of orthonormal
matrix polynomials with respect to the matrix measures d: and d;. We assume
that

lim
n � �

Dn (d:)=D and lim
n � �

En (d:)=E, (13)

where Dn (d:) and En (d:) are the matrix coefficients in the recurrence for-
mula (3) and D is a non-singular matrix.

In this section, we study the asymptotic behavior of the ratio of the lead-
ing coefficient of some nth orthonormal matrix polynomials associated to
d; and the leading coefficient of the nth orthonormal matrix polynomials
associated d:. We start with the following lemma which contains some
formulas relating the sequences of orthonormal polynomials (Pn (x, d:))n

and (Pn (x, d;))n .

Lemma 3.1. Let d: and d; be two matrix measures, and M be a positive
definite matrix such that d;(u)=d:(u)+M$(u&c), where c is a real number,
Then

Pn (x, d;)=#&
n *(d;) #n*(d:)_[Pn (x, d:)

&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MK*n+1 (c, x, d:)]. (14)

Proof. Using the reproducing property (8) for the kernel polynomials,
we have

Pn (x, d;)=| Pn (u, d;) d:(u) K*n+1 (u, x, d:)

=| Pn (u, d;) d;(u) K*n+1 (u, x, d:)

&| Pn (u, d;) MK*n+1 (u, x, d:) d$(u&c)

= :
n

j=0
_| Pn (u, d;) d;(u) P j*(u, d:)& P j (x, d:)

&Pn (c, d;) MK*n+1 (c, x, d:)
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=| Pn (u, d;) d;(u) Pn*(u, d:) .Pn(x, d:)

&Pn (c, d;) MK*n+1 (c, x, d:)

=#n (d;)&* #n (d:)* Pn (x, d:)&Pn (c, d;) MK*n+1 (c, x, d:).

If x=c, then

Pn (c, d;)[I+MKn+1 (c, c, d:)]=#n (d;)&* #n (d:)*Pn (c, d:).

Since M and Kn+1 (c, c, d:) are positive definite, we have

I+MKn+1 (c, c, d:)=(K &1
n+1 (c, c, d:)+M ) Kn+1 (c, c, d:)

is non-singular because I+MKn+1 (c, c, d:) is the product of two positive
definite matrices. Then

Pn (c, d;)=#n (d;)&* #n (d:)* Pn (c, d:)[I+MKn+1 (c, c, d:)]&1.

Finally

Pn (x, d;)=#n (d;)&* #n (d:)* Pn (x, d:)&#n (d;)&* #n (d:)*

_Pn (c, d:)[I+MKn+1 (c, c, d:)]&1 MK*n+1 (c, x, d:).

This means that

Pn (x, d;)=#&
n *(d;) #n*(d:)_[Pn (x, d:)

&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MK*n+1 (c, x, d:)]. K

Theorem 3.1. Let #n (d;) and #n (d:) be the leading coefficients of the
nth orthonormal matrix polynomials associated to the matrix measures d;
and d: related by d;(u)=d:(u)+M$(u&c), where c # R"1� and M is a
positive definite matrix. Assume that

lim
n � �

Dn (d:)=D, and lim
n � �

En (d:)=E,

where Dn (d:) and En (d:) are the matrix coefficients in the recurrence
relation (3), and D is a non-singular matrix. Then

lim
n � �

[#n (d;) #n (d:)&1]* [#n (d;) #n (d:)&1]

=I+\| dWD, E (t)
c&t +{ d

dx \| dWD, E (t)
x&t + (c)=

&1

\| dWD, E (t)
c&t + . (15)

To prove this, we start with the following lemma.
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Lemma 3.2. Let (Pn (x, d:))n be a sequence of orthonormal matrix poly-
nomials with respect to the matrix measure d:. Let Dn (d:) and En (d:) be the
matrix coefficients which appear in the recurrence relation (3), satisfying

lim
n � �

Dn (d:)=D and lim
n � �

En (d:)=E,

where D is non-singular, then

lim
n � �

P&1
n (x, d:)=0, (16)

for x # R"1� .

Proof. Notice that from (4), and using (5), we have

P&1
n (x, d:) D&1

n (d:) P *&
n&1 (x, d:)

=P&1
n (x, d:)(Qn (x, d:) P*n&1 (x, d:)

&Pn (x, d:) Q*n&1 (x, d:)) P *&
n&1 (x, d:)

=P&1
n (x, d:) Qn (x, d:)&(P&1

n&1 (x, d:) Qn&1 (x, d:))*.

But from (4), we have

P&1
n (x, d:) Qn (x, d:)

=| P&1
n (x, d:)

Pn (x, d:)&Pn (t, d:)
x&t

d:(t)

=| P&1
n (x, d:)

Pn (x, d:)&Pn (t, d:)
x&t

d:(t)

_(Pn*(x, d:)&Pn*(t, d:)) P&
n *(x, d:)

=| d:(t)
Pn*(x, d:)&Pn*(t, d:)

x&t
P&

n *(x, d:)

=(P&1
n (x, d:) Qn (x, d:))*.

Since (P&1
n (x, d:) Qn (x, d:))n is a convergent sequence for x # C"1 (see

[3]), then we have

lim
n � �

P&1
n (x, d:) D&1

n (d:) P *&
n&1 (x, d:)=0. (17)

Let (.(n))n be an increasing sequence of integer numbers such that the
limit

L(x, d:)= lim
n � �

P&1
.(n) (x, d:)
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exists or is �, (L(x, d:)=� means that at least one of its entries is �).
Then

P&1
.(n) (x, d:) D&1

.(n) (d:) P *&
.(n)&1 (x, d:)

=P&1
.(n) (x, d:) D&1

.(n) (d:) P *&
.(n)&1 (x, d:) P*.(n) (x, d:) P *&

.(n) (x, d:)

=P&1
.(n) (x, d:) D&1

.(n) (d:) . (P.(n) (x, d:) P&1
.(n)&1 (x, d:))* P *&

.(n) (x, d:).

(18)

But from (9), we get

lim
n � �

(P.(n) (x, d:) P&1
.(n)&1 (x, d:))*=\| dWD, E (t)

x&t +
&*

D&*.

Using (17) and (18), we have

0=limn � �P&1
.(n) (x, d:) D&1

.(n) (d:) P *&
.(n)&1 (x, d:)

=L(x, d:) D&1 \| dWD, E (t)
x&t +

&*
D&*L(x, d:)*

=(L(x, d:) D&1) \| dWD, E (t)
x&t +

&*
(L(x, d:) D&1)*

=(L(x, d:) D&1 \| dWD, E (t)
x&t +

&1

+
_|

dWD, E (t)
x&t

_\L(x, d:) D&1 \| dWD, E (t)
x&t +

&1

+*
.

Since x # R"1� and supp(dWD, E)=supp(d:)/1� we deduce from Proposi-
tion 2.2, that the Markov matrix function � (dWD, E (t))�(x&t) is positive
or negative definite. Hence L(x, d:) D&1(� (dWD, E (t))�(x&t))&1=0, and
thus

L(x, d:)=0.

Hence P&1
n (x, d:) has no subsequence that converges to a number (or �)

other than 0. Hence (16) holds.
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Proof (of Theorem 3.1). We proceed in several steps

Step 3.1.1. Writing 8n (c)=[#n (d;) #n (d:)&1]* [#n (d;) #n (d:)&1], we
have

8n (c)=I&[P&
n *(c, d:) M &1P&1

n (c, d:)

+P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)]&1,

- N>&#n (d;) #n (d:)&1&E (19)

where & .&E is the Frobenius norm.

Proof. If we use Lemma 3.1, we have

| Pn (x, d;) d:(x) Pn*(x, d:)

=#&
n *(d;) #n*(d:){I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 M

_| K*n+1 (c, x, d:) d:(x) Pn*(x, d:)= .

This means that

#n (d;) #&1
n (d:)=#&

n *(d;) #n*(d:)

[I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)],

and so

[#n (d;) #&1
n (d:)]* [#n (d;) #&1

n (d:)]

=I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:).

Hence,

I&8n (c)

=Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)

=[P&1
n (c, d:)]&1 (I+MKn+1 (c, c, d:))&1 [P&

n *(c, d:) M&1]&1

=[P&1
n (c, d:)+MKn+1 (c, c, d:) P&1

n (c, d:)]&1 [P&
n *(c, d:) M &1]&1

=[P&
n *(c, d:) M&1P&1

n (c, d:)+P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)]&1.

Now M and Kn (c, c, d:) are positive definite, hence I&8n (c) is also
positive definite and thus 8n (c)<I.
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Let & .&E and & .&s be respectively the Frobenius and the spectral norm
defined by

&A&2
E= :

N

i, j=1

|ai, j |
2 and &A&2

s =+ (A*A) ,

where +L is the spectral radius of L (+L=max1� j�N |*j |; * j is an eigen-
value of L). These matrix norms satisfy

v &A&2
E=tr(A*A).

v If A is hermitian, then &A&s=+A .

Finally,

&#n (d;) #&1
n (d:)&2

E=tr(8n (c))�N+8n(c)=N &8n (c)&s<N.

Hence (19) holds. K

Step 3.1.2.

lim
n � �

P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)

=&\| dWD, E (t)
c&t +

&1

\| dWD, E (t)
c&t +$ \| dWD, E (t)

c&t +
&1

. (20)

Proof. If we put P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)=(n (c), taking
into account (7) and

Pn (x) P&1
n (x)=I O (Pn (x))$ P&1

n (x)=&Pn (x)(P&1
n (x))$,

then we have

(n (c)=P&
n *(c, d:)[Pn*(c, d:) Dn+1 (Pn+1 (c, d:))$

&P*n+1 (c, d:) D*n+1 (Pn (c, d:))$] P&1
n (c, d:)

=Dn+1 (Pn+1 (c, d:))$ P&1
n (c, d:)

&P&
n *(c, d:) P*n+1 (c, d:) D*n+1 (Pn (c, d:))$ P&1

n (c, d:)

=Dn+1 (Pn+1 (c, d:))$ P&1
n (c, d:)

+P&
n *(c, d:) P*n+1 (c, d:) D*n+1 Pn (c, d:)(P&1

n (c, d:))$

=Dn+1 (Pn+1 (c, d:))$ P&1
n (c, d:)

+P&
n *(c, d:) Pn*(c, d:) Dn+1 Pn+1 (c, d:)(P&1

n (c, d:))$
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=Dn+1 ((Pn+1 (c, d:))$ P&1
n (c, d:)+Pn+1 (c, d:)(P&1

n (c, d:))$)

=Dn+1 (Pn+1 (c, d:) P&1
n (c, d:))$

=Dn+1[(Pn (c, d:) P&1
n+1 (c, d:))&1]$

=&Dn+1 (Pn (c, d:) P&1
n+1 (c, d:))&1

_(Pn (c, d:) P&1
n+1 (c, d:))$ (Pn (c, d:) P&1

n+1 (c, d:))&1.

Using (9) and (12), we have

lim
n � �

P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)

=&\| dWD, E (t)
c&t +

&1

\| dWD, E (t)
c&t +$ \| dWD, E (t)

c&t +
&1

.

Thus, for the proof of Theorem 3.1, we can use Lemma 3.2 to find
limn � � P&1

n (c, d:)=0. Finally, from

&P&
n *(c, d:) M&1P&1

n (c, d:)&s�&P&1
n (c, d:)&2

s .&M &1&s ,

where & .&s is the spectral norm, we get

lim
n � �

P&
n *(c, d:) M&1P&1

n (c, d:)=0. (21)

Thus (15) follows. K

Let (Pn (x, d:)=#n (d:) xn+bn (d:) xn&1+lower degree terms)n be a
sequence of orthonormal matrix polynomials satisfying (13), then there
exists a sequence of orthonormal matrix polynomials (Pn (x, d;)=
#n (d;) xn+bn (d;) xn&1+lower degree terms)n with respect to the matrix
measure d; for which [#n (d;) #&1

n (d:)]* are lower triangular matrices
with positive diagonal elements. In fact, if from a sequence (Pn (x, d;))n the
ratio of leading coefficients [#n (d;) #&1

n (d:)] are not upper triangular
matrices with positive diagonal elements. Then we can find a sequence of
unitary matrices (Sn)n such that (S n* Pn (x, d;)=*n (d;) xn+lower degree
terms)n is a sequence of othonormal matrix polynomials for which
[*n (d;) #&1

n (d:)]* are lower triangular matrices with positive diagonal
elements. To see this, we recall that the associated orthonormal matrix
polynomials with respect to the matrix measure d: and d; have, respec-
tively, the form (UnPn (x, d:))n and (VnPn (x, d;))n (Un and Vn are unitary
matrices). Then the leading coefficients are related by

*n (d:)=Un #n (d:)

*n (d;)=Vn #n (d;).
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Therefore

[#n (d;) #&1
n (d:)]* Vn*=Un*[*n (d;) *&1

n (d:)]* (22)

and

[*n (d;) *&1
n (d:)]* [*n (d;) *&1

n (d:)]

=U n[#n (d;) #&1
n (d:)]* [#n (d;) #&1

n (d:)] Un* . (23)

Taking Un=I, (13) holds. Now, we consider the sequence of orthonormal
matrix polynomials (Sn* Pn (x, d;))n where (Sn)n are unitary matrices
given by the QR factorization of Francis and Kublanovskaja [10] of
[#n (d;) #&1

n (d:)],

[#n (d;) #&1
n (d:)]=S� nR� n ,

where S� n is an unitary matrix and R� n is an upper triangular matrix. Then
taking Sn=S� n Jn and Rn=JnR� n , where

[Jn] i, j={
[R� n ] i, i

|[R� n ] i, i |
if i= j

0 otherwise,

we get that [*n (d;) #&1
n (d:)]* are lower triangular matrices with positive

diagonal elements, since from (22) we have

[*n (d;) #&1
n (d:)]*=[#n (d;) #&1

n (d:)]* Sn=R� n*Jn .

Now, using (19), let n& be an increasing sequence of positive integer numbers
such that the limit

4(c)= lim
& � �

[#n&
(d;) #&1

n&
(d:)]*

exists. From (15), we have

4(c) 4*(c)=I+|
dWD, E (t)

c&t {\| dWD, E (t)
c&t +$=

&1

|
dWD, E (t)

c&t
. (24)
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The matrix valued function

I+|
dWD, E (t)

c&t
.{\| dWD, E (t)

c&t +$=
&1

.|
dWD, E (t)

c&t

=I&|
dWD, E (t)

c&t
.{| dWD, E (t)

(c&t)2 =
&1

.|
dWD, E (t)

c&t
(25)

is positive definite when c # R"1� . In fact from (24), it is sufficient to prove
that this matrix is non-singular.

We suppose that there is a non zero vector column x such that

\I+|
dWD, E (t)

c&t
.{\| dWD, E (t)

c&t +$=
&1

.|
dWD, E (t)

c&t + x=0.

Then

\| dWD, E (t)
c&t

.{| dWD, E (t)
(c&t)2 =

&1

.|
dWD, E (t)

c&t + x=x,

and since � (dWD, E (t))�(c&t) and its derivative are non-singular when
c # R"1� , we have

|
dWD, E (t)

(c&t)2 .\| dWD, E (t)
c&t +

&1

x=\| dWD, E (t)
c&t +

2

.\| dWD, E (t)
c&t +

&1

x. (26)

Writing

|
dWD, E (t)

c&t
=GD, E (c)

\| dWD, E (t)
c&t +

&1

x=y,

then (26) becomes

G$D, E (c) y=&(GD, E (c))2 y; y{0. (27)

From (3), we have

(tI&En (d:)) Pn (t, d:)=Dn+1 (d:) Pn+1 (t, d:)+Dn*(d:) Pn&1 (t, d:)
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and then

Dn*(d:)(Pn&1 (t, d:) P&1
n (t, d:) D&1

n (d:))

Dn (d:)(Pn (t, d:) P&1
n+1 (t, d:) D&1

n+1 (d:))

+(En (d:)&tI )(Pn (t, d:) P&1
n+1 (t, d:) D&1

n+1 (d:))+I=0,

for t # R"1. Using (13) and (9), we get

D*GD, E (t) DGD, E (t)+(E&tI ) GD, E (t)+I=0. (28)

Taking derivatives in (28) at the point c, we get

D*G$D, E (c) DGD, E (c)+D*GD, E (c) DG$D, E (c)

&GD, E (c)+(E&cI ) G$D, E (c)=0.

Using (27), we have

D*G$D, E (c) DGD, E (c) y&D*GD, E (c) D(GD, E (c))2y

&GD, E(c) y&(E&cI )(GD, E (c))2y=0.

This means that

(D*G$D, E (c) D) GD, E (c) y&[D*GD, E (c) DGD, E (c)

+(E&cI ) GD, E (c)+I] GD, E (c) y=0,

and therefore

(D*G$D, E (c) D) x=0.

Hence (25) is positive definite when c # R"1� . Using the Cholesky factoriza-
tion of (25), the limit 4(c) is finite, with positive diagonal elements, and it
is unique.

This means that every convergent subsequence of [#n (d;) #&1
n (d:)]*

converges to 4(c), hence

lim
n � �

[#n (d;) #&1
n (d:)]*=4(c). (29)

Notice that we can also find (Pn (x, d;))n such that [#n (d;) #&1
n (d:)]* are

upper triangular matrices with positive diagonal elements. In fact, as
before, it is sufficient to give the unitary matrices (Sn)n by using the QL
factorization instead of the QR factorization, and since the matrix given in
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the right hand side of (25) is positive definite, there is a unique upper
triangular matrix 4� (c), with positive diagonal elements satisfying

4� (c) .4� (c)*=I+|
dWD, E (t)

c&t
.{\| dWD, E (t)

c&t +$=
&1

.|
dWD, E (t)

c&t

such that

lim
n � �

[#n (d;) #&1
n (d:)]*=4� (c).

Now we consider the matrix measure

d;(u)=d:(u)+ :
N

k=1

Mk $(u&ck), (30)

where Mk are positive definite matrices and ck # R"1� as well as the family
of the matrix measures d;n , n=0, ..., N defined by

d;n (u)=d:(u)+ :
n

k=1

Mk$(u&ck), n=1, ..., N&1,
(31)

d;0=d:, d;N=d;.

By repeated application of the previous results we obtain asymptotics and
estimates for #n (d;).

Theorem 3.2. Let #n (d:) be the leading coefficients of the orthonormal
matrix polynomials (Pn (x, d:)=#n (d:) xn+lower degree terms)n associated
to d:. Assume that

lim
n � �

Dn (d:)=D, and lim
n � �

En (d:)=E,

where D is a non-singular matrix. Then there exists a sequence of orthonor-
mal matrix polynomials (Pn (x, d;))n with respect to d; defined by (30) such
that

lim
n � �

[#n (d;) #&1
n (d:)]*=41(c1) 42 (c2) } } } 4N(cN),

where

4k (ck)= lim
n � �

[#n (d;k) #&1
n (d;k&1)]*, for k=1, ..., N. (32)
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Proof. The family of the matrix measures defined by (31) can be
generated in the following way

d;m+1 (u)=d;m (u)+Mm+1$(u&cm+1); m=0, 1, ..., N&1.

Since

#n (d;) #&1
n (d:)=#n (d;N) #&1

n (d;0)

=#n (d;N) #&1
n (d;N&1) #n (d;N&1) } } } #&1

n (d;1)

#n (d;1) #&1
n (d;0),

then from [18, Thm 4.1], if

lim
n � �

Dn (d;m)=Dm ,

and

lim
n � �

En (d;m)=Em ; Dm non-singular

for each m=0, 1, ..., N&1, then there is a sequence of orthonormal matrix
polynomials with respect to d;m+1 , such that its associated matrix
recurrence coefficients satisfy

lim
n � �

Dn (d;m+1)=4*m+1 (cm+1) Dm 4 *&
m&1 (cm+1)

and

lim
n � �

En (d;m+1)=4*m+1 (cm+1)

{Em+Dm[4 *&
m&1 (cm+1) .4&1

m+1 (cm+1)&IN] Dm*

_|
dWDm , Em

(t)

cm+1&t

&[4 *&
m&1 (cm+1) .4&1

m+1 (cm+1)&IN] Dm*

_|
dWDm , Em

(t)

cm+1&t
Dm= 4 *&

m&1 (cm+1).

Hence by repeated application of (29) and taking into account (32) we get

lim
n � �

[#n (d;) #&1
n (d:)]*=41 (c1) 42 (c2) } } } 4N(cN). K
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Example 1. We take

D=\4 0
0 1

9+ , E=\1 0
0 1+ .

A straightforward computation yields

1
2

D&1 (cI&E ) D&1=\
&1+c

32

0

0

81(&1+c)
2 +

and

D&1�2 (E&cI ) D&1 (E&cI ) D&1�2&4I=\
&63&2c+c2

16
0 + .

0 77&162c+81c2

From the equation (10), we get

|
dWD, E (t)

c&t
=

1
2 \

a(c)
0

0
b(c)+ , (33)

where

a(c)= 1
16 (&1+c&- &63&2 c+c2)

b(c)=(&81 (1&c)&9 - 77&162 c+81 c2),

supp(dWD, E)=[&7, 9] �[ 7
9 , 11

9 ]=[&7, 9], and the square roots are
chosen such that � (dWD, E (t))�(z&t) is analytic in C"[&7, 9].

Taking derivatives on the right hand-side of the equation (33) and
computing its inverse, we get

\ d
dz |

dWD, E (t)
z&t +

&1

(c)=\x1 (c)
0

0
x2 (c)+ ,

where

x1 (c)= &
(&9+c)(7+c)+(&1+c) - (&9+c) (7+c)

2

x2 (c)= &
77

162
+c&

c2

2
&

(&1+c) - (&11+9 c) (&7+9 c)
18

.

21ORTHOGONAL MATRIX POLYNOMIALS



Computing the terms given in (24), we get

4(c) 4*(c)=\y1 (c)
0

0
y2 (c)+ ,

where

y1 (c)= 1
32 (&31&2 c+c2&(&1+c) - (&9+c) (7+c))

y2 (c)= 1
2 (79&162 c+81 c2&9 (&1+c) - (&11+9 c) (&7+9 c)).

Finally, using the Cholesky decomposition, we obtain

4(c)=
1

4 - 2 \
z1 (c)

0
0

z2 (c)+ , (34)

where

z1 (c)=- &31&2 c+c2&(&1+c) - (&9+c) (7+c)

z2 (c)=4 - 79&162 c+81 c2&9 (&1+c) - (&11+9 c) (&7+9 c).

4. RELATIVE ASYMPTOTICS FOR ORTHONORMAL
MATRIX POLYNOMIALS

We will now give some asymptotic results for ratios and products of
orthonormal matrix polynomials with respect to the matrix measures
d: and d; related by d;(u)=d:(u)+M$(u&c), with c # R"1� and M a
positive definite matrix.

First we will obtain the relative asymptotics for the ratio of some
orthonormal matrix polynomials (Pn (x, d;))n and (Pn (x, d:))n with respect
to the matrix measure d; and d: respectively.

Theorem 4.1. Let (Pn (x, d:))n be orthonormal matrix polynomials with
respect to d:. Let (Dn (d:))n be positive definite and (En (d:))n hermitian
matrices which appear in (3), satisfying

lim
n � �

Dn (d:)=D, lim
n � �

En (d:)=E; D is non-singular.
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Then there exists a sequence of orthonormal matrix polynomials (Pn (x, d;))n

with respect to d; such that for x # R"[1� _ [c]]

lim
n � �

Pn (x, d;) P&1
n (x, d:)=4(c)&1+

1
c&x

[4(c)*&4(c)&1]

_{\| dWD, E (t)
c&t +

&*
&\| dWD, E(t)

x&t +
&1

= ,

(35)

where 4(c) is given in (29).

Proof. If we multiply in (14) by P&1
n (x, d:), we have

Pn (x, d;) P&1
n (x, d:)

=#&
n *(d;) #n*(d:)[I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1

_MK*n+1 (c, x, d:) Pn (x, d:)&1].

But,

(c&x) K*n+1 (c, x, d:)

=P*n+1 (c, d:) D*n+1 Pn (x, d:)&Pn*(c, d:) Dn+1Pn+1 (x, d:),

so

MK*n+1 (c, x, d:) P&1
n (x, d:)=

1
c&x

M[P*n+1 (c, d:) D*n+1

&Pn*(c, d:) Dn+1Pn+1 (x, d:) P&1
n (x, d:)],

and hence

Pn (x, d;) P&1
n (x, d:)

=#&
n *(d;) #n*(d:) {I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 1

c&x
M

_[P*n+1 (c, d:) D*n+1&Pn*(c, d:) Dn+1Pn+1 (x, d:) P&1
n (x, d:)]=

=#&
n *(d;) #n*(d:) {I&

1
c&x

Pn (c, d:)

_(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)

_[P&
n *(c, d:) P*n+1 (c, d:) D*n+1&Dn+1Pn+1 (x, d:) P&1

n (x, d:)]= .
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Since

[#n (d;) #&1
n (d:)]* [#n (d;) #&1

n (d:)]

=I&Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)

we have

Pn (x, d;) P&1
n (x, d:)

=[#n (d;) #&1
n (d:)]&* {I&

1
c&x

I&[#n(d;) #&1
n (d:)]* [#n(d;) #&1

n (d:)])

_[P&
n *(c, d:) P*n+1(c, d:) D*n+1&Dn+1Pn+1(x, d:) P&1

n (x, d:)]= .

(36)

Writing

5n (x, d:)=[Dn+1Pn+1 (c, d:) P&1
n (c, d:)]*

&[Dn+1Pn+1 (x, d:) P&1
n (x, d:)],

(36) becomes

Pn (x, d;) P&1
n (x, d:)

=[#n (d;) #&1
n (d:)]&*

_{I&
1

c&x \I&[#n (d;) #&1
n (d:)]* [#n (d;) #&1

n (d:)]) 5n (x, d:)=
=[#n (d;) #&1

n (d:)]&*&
1

c&x
[#n (d;) #&1

n (d:)]&* 5n (x, d:)

+
1

c&x
[#n (d;) #&1

n (d:)]&* 5n (x, d:)

=[#n (d;) #&1
n (d:)]&*

+
1

c&x
[[#n (d;) #&1

n (d:)]&[#n (d;) #&1
n (d:)]&*] 5n (x, d:).

From (9) we have

lim
n � �

5n (x, d:)=\| dWD, E (t)
c&t +

&*
&\| dWD, E (t)

x&t +
&1

.
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By Theorem 3.2, there exists a sequence of orthonormal matrix polyno-
mials (Pn (x, d;))n such that

lim
n � �

[#n (d;) #&1
n (d:)]*=4(c),

hence

lim
n � �

Pn (x, d;) P&1
n (x, d:)=4(c)&1+

1
c&x

[4(c)*&4(c)&1]

_{\| dWD, E (t)
c&t +

&*
&\| dWD, E (t)

x&t +
&1

= . K

Now we will generalize Theorem 4.1, assuming that d; and d: are
related by (30).

Theorem 4.2. Let (Pn (x, d:))n be a sequence of orthonormal matrix
polynomials with respect to the matrix measure d:. Assume that the matrix
coefficients in (3) satisfy

lim
n � �

Dn (d:)=D, lim
n � �

En (d:)=E; D is non-singular.

Then there exists a sequence of orthonormal matrix polynomials (Pn (x, d;))n

with respect to d; such that for x # R"[1� _ [ck ; k=1, ..., N]]

lim
n � �

Pn (x, d;) P&1
n (x, d:)

�

= `
1

k=N

[4k (ck)&1+
1

ck&x
[4k (ck)*&4k (ck)&1]

__\| dWD, E (t)
ck&t +

&*
&\| dWD, E (t)

x&t +
&1

&= ,

�
where >r+s

k=r Tk=Tr Tr+1 } } } Tr+s and 4k (ck) is given by (32).

Proof. This follows immediately from Theorem 4.1 using the proof
given in Theorem 3.2. K

Next we will obtain an asymptotic formula for the product of the
orthonormal matrix polynomials Pn (c, d;) and Pn (c, d:) at the mass point
c, where d;(u)=d:(u)+M$(u&c), with M a positive definite matrix and
c # R"1� .
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Theorem 4.3. Let (Pn (x, d:))n be a sequence of orthonormal matrix
polynomials with respect to the matrix measure d:. Assume that the matrix
coefficients in (3) satisfy

lim
n � �

Dn (d:)=D, lim
n � �

En (d:)=E; D is non-singular.

Then there exits a sequence of orthonormal matrix polynomials (Pn (x, d;))n

with respect to the matrix measure d;, such that

lim
n � �

Pn (c, d;) MPn*(c, d:)

=&4(c)&1 {| dWD, E (t)
c&t ={\| dWD, E (t)

c&t +$=
&1

{| dWD, E (t)
c&t = . (37)

Proof. Multiplying MPn*(c, d:) to the right on the both hand-sides of
(14), we have

Pn (c, d;) MPn*(c, d:)

=[#n (d;) #&1
n (d:)]&*[Pn (c, d:) MPn*(c, d:)

&Pn(c, d:)(I+MKn+1 (c, c, d:))&1 MKn+1(c, c, d:) MPn*(c, d:)].

But

Pn (c, d:) MPn*(c, d:)

=Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)

+Pn (c, d:)(I+MKn+1 (c, c, d:))&1MKn+1 (c, c, d:) MPn*(c, d:),

so

Pn (c, d;) MPn*(c, d:)=[#n (d;) #&1
n (d:)]&*

_[Pn (c, d:)(I+MKn+1 (c, c, d:))&1 MPn*(c, d:)].

This means that

Pn (c, d;) MPn*(c, d:)=[#n (d;) #&1
n (d:)]&* [P&

n *(c, d:) M&1P&1
n (c, d:)

+P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)]&1.

As in the proof of (21) we have

limn � � P&
n *(c, d:) M&1P&1

n (c, d:)=0,
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and from (20)

lim
n � �

P&
n *(c, d:) Kn+1 (c, c, d:) P&1

n (c, d:)

=&\| dWD, E (t)
c&t +

&1

\| dWD, E (t)
c&t +$ \| dWD, E(t)

c&t +
&1

.

By Theorem 3.2, there exists a sequence of orthonormal matrix polyno-
mials (Pn (x, d;))n such that

lim
n � �

[#n (d;) #&1
n (d:)]*=4(c),

hence

limn � �Pn (c, d;) MPn*(c, d:)

= &4(c)&1 {| dWD, E (t)
c&t ={\| dWD, E (t)

c&t +$=
&1

{| dWD, E (t)
c&t = .

Example 2. We compute the relative ratio asymptotic of orthogonal
matrix polynomials whose coefficients of the recurrence relations converge
to

D=\4
0

0
1
9+ and E=\1 0

0 1+ .

Using (33) in the Example 1, we have

\| dWD, E (t)
c&t +

&*
&\| dWD, E (t)

x&t +
&1

=\:(c, x)
0

0
;(c, x)+ ,

where

:(c, x)=
c+- (&9+c) (7+c)&x&- (&9+x) (7+x)

2

;(c, x)=
9 c+- (&11+9 c) (&7+9 c)&9 x&- (&11+9 x) (&7+9 x)

18
.

Therefore

lim
n � �

Pn (x, d;) P&1
n (x, d:)=\

#(c, x)
*(c, x)

0

0

+(c, x)
&(c, x)+ ,
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where

#(c, x)=64&
\(63+2 c&c2+(&1+c) - (&9+c)(7+c))

_(c+- (&9+c)(7+c)&x&- (&9+x) (7+x))+
c&x

*(c, x)=
16

- 2
- &31&2c+c2&(&1+c) - (&9+c)(7+c)

+(c, x)=&9(&1+c)(77+81c(&1+x)&81x)

+- (&11+9c)(&7+9c)(77+81c(&1+x)&81x)

&(&11+9c)(&7+9c) - (&11+9x)(&7+9x)+

+9(&1+c) - (&11+9c)(&7+9c) - (&11+9x)(&7+9x)

&(c, x)=
36

- 2
(c&x)

_- 79&162c+81c2&9(&1+c) - (&11+9c)(&7+9c).

Example 3. We compute the product of orthogonal matrix polyno-
mials evaluated at the mass point when the coefficients in the recurrence
relation converge to

D=\1 0
0 1+ and E=\1 1

1 1+ .

By computation of the terms given in (10), we have

|
dWD, E (t)

c&t
=

1
4 \

a(c)
b(c)

b(c)
a(c)+ ,

where

a(c)=&2+2c&- (&4+c) c&- &4+c2

b(c)=&2&- (&4+c) c+- &4+c2,

supp(dWD, E)=[0, 4] �[&2, 2]=[&2, 4], and the square roots are
chosen such that � (dWD, E (t))�(z&t) is analytic in z # C"[&2, 4].

As in the example 1, we obtain

4(c)=\u1 (c)
u2 (c)

0
u3 (c)+ ,

28 YAKHLEF, MARCELLA� N, AND PIN� AR



where

u1 (c)=
1
2

- 2(&2+c) c&(&2+c) - (&4+c) c&c - &4+c2

u2 (c)=
4&4c&(&2+c) - (&4+c) c+c - &4+c2

- 2(&2+c) c&(&2+c) - (&4+c) c&c - &4+c2

u3 (c)=
1
2 \&4&2c+c2&

(2+c)(2+(&4+c) c)

- &4+c2

+- (&4+c) c - &4+c2&
- (&4+c) c(&2+c2)

c +
1�2

.

Then, we have

lim
n � �

Pn (c, d;) MPn*(c, d:)=\w1 (c) w2 (c)
w3 (c) w4 (c)+ ,

where

w1(c)=
4&2(&2+c) c+(&2+c) - (&4+c) c+c - &4+c2

- 2(&2+c) c&(&2+c) - (&4+c) c&c - &4+c2

w2(c)=
4(&1+c)+(&2+c) - (&4+c) c&c - &4+c2

- 2(&2+c) c&(&2+c) - (&4+c) c&c - &4+c2

4u2
1 (c) u3 (c) w3 (c)=4(&1+c)+(&2+c) - (&4+c) c&c - &4+c2

4u2
1 (c) u3 (c) w4 (c)=4&12c+2c2+4c3&c4

&(&2+c) c - (&4+c) c - &4+c2

+c(1+(&4+c) c) - &4+c2

+(&2+c) - (&4+c) c (&3+c2).
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